Soil Fertility

IMG_2499 Everyone is agreed that one of the central components of achieving an ‘African Green Revolution’ is to tackle the widespread soil fertility constraints in African agriculture. To this end, AGRA – the Alliance for a Green Revolution in Africa – has launched a major new ‘Soil Health’ programme aimed at 4.1 million farmers across Africa, with the Bill and Melinda Gates Foundation committing $198 million to the effort. The Abuja declaration, following on from the African Fertilizer Summit of 2006 set the scene for major investments in boosting fertilizer supplies. CAADP – the Comprehensive African Agricultural Development Programme – has been active in supporting the follow up to the summit, particularly through its work on improving markets and trade. Other initiatives abound – the Millennium Villages programme, Sasakawa-Global 2000 But what are the policy frameworks that really will increase soil fertility in ways that will boost production in a sustainable fashion; where the benefits of the interventions are widely distributed, meeting broader aims of equitable, broad-based development? Here there is much less precision and an urgent need for a concrete debate. For this reason, the Future Agricultures Consortium (FAC) has decided to invite a wide range of participants to debate some key issues around the way forward for policy, and associated institutional arrangements. Details of the debating questions are outlined below and the document can also be downloaded as a ‘pdf’ document in the right-hand column.

Please continue to contribute whatever you feel moved to write to Comments should be short, provocative and challenging.

We want a thorough debate so feel free to forward to anyone you think would be interested. Links to:

Latest articles

P. Phiri Marenya
January 22, 2010 / Soil Fertility

Increasing Soil Fertility in Africa: Indispensable but Insufficient

Solving soil fertility management via increased fertilizer and organic inputs is an indispensable but insufficient element of agricultural and rural development in sub-Saharan Africa (SSA).

From my recent research findings I find that suggest that biophysical factors, significantly affects the economic returns to fertilizer inputs. Some farmers cultivating more degraded soils may find it unprofitable to invest in soil nutrient inputs, not necessarily because the fertilizer/crop price ratio is too high or due to credit, information or risk constraints, or because of supply-side impediments, but because marginal yield response to fertilizer application is low on soils that have already undergone serious degradation, suggesting soil fertility mediated poverty traps. Thus using the ‘indispensable but insufficient’ as a key principle, it is possible to outline why taking a broader focus on the soil fertility problem stands a better chance of success. This broader approach will provide complementary (and sufficient) conditions to buttress these programs as part of a broader rural economy.

In this debate I am most interested in the bullet point that asks: What happens when there is no market – or when market mechanisms don’t reach certain places or people?. In my experience, I find that people involved in Agricultural development often look at the process of agricultural development as that of transforming low-productivity subsistence farms into ‘small-scale business firms’ producing and selling some agricultural product for own consumption, sale or both and at the end of the day generating incomes and profit.  I use the term ‘business firm’ because to achieve the kind of increases in the use of fertilizers and other labor intensive soil fertility investments these investments must provide adequate profit or financial returns for individual farmers and for society these investments must also be economically sensible especially where public resources are to be expended. How realistic is it to aim at turning millions of subsistence farmers into businesswomen and men?

The conditions which have made investments in soil fertility inputs (SFI) to become both financially and economically unremunerative (and hence the preponderance of subsistence modes of production) have well been documented which I broadly summarize as follows:

  • Lack of physical and market infrastructure which has stifled the development of commercial fertilizer supply networks.
  • The preponderance of low value agricultural enterprises creates high input-output price ratios making their use infeasible.
  • Lack of requisite financial capital (associated by missing credit markets) to invest in SFI even if such investments offer decent returns.

Therefore, the outcome in many parts of sub-Saharan Africa (SSA) are exactly as predicted by basic tenets of microeconomic theory. These conditions reflect rational responses of economic players in SSA’s agricultural sectors to unfavorable input-output prices for farmers and for potential fertilizer dealers, the resulting thin input markets make fertilizer merchandizing an unprofitable proposition at various levels, hence the low supply of fertilizers.

In order to develop key policy principles for soil fertility recapitalization we need therefore to look more keenly at rural household goals and incentives. This is because incentives should be at the heart of efforts to increase investments in SFI:

  • Is food self sufficiency an overriding incentive for all or just some households? Does food self sufficiency translate into adequate household incomes?
  • Are there rural households in SSA who can solely rely on agricultural markets for their food supply through earning income in rural and peri-urban labor markets or through production of non-staple commodities including livestock products?
  • What might the optimal balance between partly supplying own food and partly relying on agricultural markets for food look like?

Below I sketch three scenarios with attendant policy foci in a way that I believe will broaden the approach to solving soil fertility problems and rural development.

  • Households in areas with little or no reach to markets

In simple terms, these places are cut off from national markets by reason of lack of transport and communication infrastructure or their economic bases have no link to the broader national or regional economies.  In the former case, neither state nor non-government actors can do anything about low supply of fertilizers until there is infrastructure in place to enable commercial or publicly supported delivery.  Self provision of food in these environments may be high on the household’s agenda and should therefore be a legitimate concern for public policy.

In the latter case it is apparent that there is no realistic way of increasing food production without opening up these areas and linking them to the wider world. Will that require increased food production with attendant increases in the use of SFI? Will other natural resource based economic activities such as forestry, livestock production or fishing (which may require more natural resource management than external fertilizers) develop?

Key Policy Principle: If there are realistic chances of increasing the use of SFI excluding fertilizers (and that is a big ‘if’) then these may offer the best chance in the short term for improving soil fertility and food production. Focus on the natural resource management (NRM) aspects of SFI to promote local production of food and inter-household trade within the region may be the most feasible in the immediate term. The most important adjunct is to integrate these areas to national economies by bringing in infrastructure investments in order to allow the importation of food and exportation of niche products from these areas.

The process may lead to these areas joining category number 2 and eventually category 3 below with attendant policy focus.

  • Households in areas with some (moderate) market access.

Households in these regions have some rudimentary access to local labor and agricultural markets. These markets provide some employment opportunities but not sufficient to make them rely solely on labor incomes and agricultural markets for their food consumption. For these households, the greatest benefit will be adequate self-provision of (and perhaps even self sufficiency in) basic foodstuffs. If this can happen and these households are able to spare some labor for off-farm income generation there will be a significant dent on poverty.

Key Policy Principle: Focus on infrastructure investment and ‘Smart Subsidies’ until such a time that  these areas are fully integrated into the national and global economies leading to expansion of economic opportunities and less reliance on subsistence economic activities and more on employment in high-productivity agricultural production as well as in alternative sectors.

  • Households in areas with good (adequate) access to markets

These areas are on average likely to be situated in high potential agro-ecozones which is why infrastructure and markets have developed in these areas. These are also the same areas where input use are likely to be above national average even if not necessarily at par with international averages in similar areas outside SSA. Households in these regions may have greater off-farm employment opportunities and therefore can reasonably rely on local agricultural markets for their food supply. These areas also offer the greatest opportunity for expanding agro-dealer networks. These regions should receive as much attention in terms of fertilizer programs and policies as the low potential areas. Some may worry that such an approach may stretch public resources too much leading to perhaps ‘anti-poor’ outcomes. I disagree. If national policies lead to increased commercial food production in high potential areas and hence lower food prices, the greatest beneficiaries will be the poor households who rely on markets for their food production.  There will always be households for whom own production will be a better alternative. For these I have outlined key principles in category 1 and 2 above.

Key Policy Principle: The chief policy principle in these zones should be increased use of fertilizer to achieve productivity levels at par with international levels while ensuring environmental sustainability. Any macroeconomic policy lever which can be used to reduce fertilizer costs and increase its supply should be fully exploited.

A generic focus on soil fertility management will fail to generate the needed response from farmers or even achieve economic and equity goals unless there is adequate compartmentalization of the problem. It is apparent that there are households and regions where the most economical approach is to enable households use just enough fertilizers and other SFI to achieve a degree of household food self sufficiency and to sustain the soils for continued household food supply. These households generate extra incomes from labor markets. In these areas, public resources in the form of smart subsidies and other approaches may dominate fertilizer and SFI programming.  On the other end of the spectrum is a situation where households will need to increase the use of fertilizers and other SFI considerably for commercialized food and cash crop production. It will be easier to develop market based mechanisms for increased fertilizer supply in these areas.

In this contribution, I have tried to provide an archetypal scheme that can be used for separating out policy approaches suitable for different market circumstances. The key principle that should permeate the whole discussion is that the problem of soil fertility depletion is both a cause and a consequence of underdevelopment. It is possible that progress in non-agricultural sectors within rural areas can stimulate enough economic growth and linkages to agriculture and improve incentives for SFI use without resorting to subsidies to encourage increased use of SFI.

It has been recognized in the background document to this debate that increased use of SFI will not provide the same level of incentives for all households. It may be desirable heighten policy focus on market-based fertilizer (SFI) programs in areas with the greatest financial and economic returns. Other areas may require greater publicly-supported investments in NRM to accompany fertilizer programs. This is especially so if investments in NRM have been hampered by high labor and financial costs.

Agricultural development will require more than increased use of SFI, rather it will require investments in public goods needed for broad rural development. These investments will benefit all sectors of the rural economy providing the best incentives for investing in SFI and reversing soil fertility depletion because these SFI investments will now yield adequate returns by reason of increased and diversified demand for agricultural products. This in my view will provide the best chance for soil fertility recapitalization and agricultural development as part of the rural and national economies.


P. Phiri Marenya, Lecturer
Department of Agricultural Economics University of Nairobi

Joost Brouwer
January 22, 2010 / Soil Fertility

At least in the semi-arid regions of Africa, if within-field soil variability is not taken into account, efforts to increase soil fertility will be less efficient and less likely to be adopted by farmers.  Most of these farmers already practice ‘precision agriculture’ and take short distance variability into consideration in their management. One can safely assume that they do so for good reason, given that their management systems have developed over many centuries.

Precision agriculture is also relevant for the introduction of modern technologies.  For example, the same principles are relevant to the efficient application of manure and the efficient application of compost and mineral fertiliser.

For the best solutions, farmer knowledge, extensionist knowledge and researcher knowledge of within-field soil variability need to be combined.  This will lead to an increase in the knowledge of each group regarding the variability-related possibilities and constraints of the other groups.  Increased farmer knowledge will lead to better and more efficient farmer management.  Increased researcher knowledge of soil variability will lead to better-targeted and more efficient soil fertility research.  If the minimum management area for farmers is part of a field, and researchers only analyse at the level of an entire field or experiment, then those researchers ignore information that is very relevant to the farmers.  They should look for variables at the plot level that help explain why, in any one year as well as over the years, different plots with the same treatment react differently.  They will find this useful for increasing their agro-ecological knowledge, for improving their scientific publications, and especially for more effective extension to the farmers.  Farmers prefer well differentiated advice to blanket advice that turns out not to work part of the time, or in sections of their fields.

For further information, many telling images and additional soil variability literature references, see the final reference in the background document to this internet discussion.  In this downloadable reference there is also information on how better knowledge of within-field soil variability can lead to increased yield security in times of unpredictable climate change.

[Also see publication in Resources]

Joost Brouwer
Brouwer Envir. & Agric. Consultancy, Bennekom

Eric Smaling
January 22, 2010 / Soil Fertility

I commend Ian Scoones for his excellent brief historic account of African soil fertility-related research over the last 10-20 years.

I share a kind of ‘cross-roads’ feeling on Africa, now that food price rises have caused turmoil and protectionist reflexes by rice-exporting countries. The Indian Trade Minister, at the failed WTO talks last week in Geneva put it right: ‘every country should be allowed to strive at food self-sufficiency’.

There are limits to market liberalization for agriculture.  Next, protagonists of free markets have first sealed off their markets in order to develop their agricultural markets. EU and US still do this to a large extent.  If Africa does not step up its own production, it will face a worsening terms of trade on agriculture year after year.  The sale of natural resources to China will not change this. Development has taken off everywhere in the world with a strong agriculture sector.

Africa should be allowed to develop agriculture following a model such as the Common Agricultural Policy.  As a certain size is needed in terms of area and inhabitants, the economic regions such as ECOWAS and COMESA may be suitable units.  EU, AfDB and BMGatesFound can be instrumental in helping the areas to develop their agriculture. Actually, it would fit nicely in the European Development Fund. A demand-supply analysis is needed, and the selection of regions where intensification stands the best chance of success.  Fertilizer needs and distribution networks should ideally also be organized for the economic regions as a whole to benefit from economies of scale. Microdosing efforts should be promoted at a large scale to access resource-poor farmers, and subsidies on fertilizers should be allowed (using the Malawi case as an example). The abolishment of fertilizer subsidies and the virtual ban on parastatals in the 1980s/1990s was a big mistake, somehow admitted by the World Bank in their latest World Development Report. CIMMYT for example was doing a good job with NARS in developing maize hybrids, only to find their effors frustrated by structural adjustment policies.

There is momentum now to really act: but the question Ian rightly poses is: how to act?  In my view, the following investment pays off best, taking a region such as ECOWAS as an example:

  • SECTOR ANALYSIS: analyse food demand and supply for the region, map current and future population distribution; and link that to current and future agriculture areas; analyse necessary price levels to make increased production profitable
  • PRODUCERS: invest strongly in organizing producer organizations/cooperatives: get farmers trained, organized, connected (mobile phones, market information); what motivates them to increase production? are remittances important, making them less anxious to produce more?
  • PRODUCTS: focus on crops with a high response to fertilizers and manure; high-value crops and crops that see demand grow rapidly (e.g. soybean, oilpalm); particular attention for livestock (small ruminants)
  • POPULATION: partition the region into areas of higher and lower potential, proximity to consumers, and infrastructure density and development needs
  • FERTILIZERS: produce N fertilizer in the region, exploit natural P reserves, and do tests on micronutrient needs and deficiencies; recycle town wastes for compost in the peri-urban area
  • POVERTY: for some harsh areas, safety nets may be needed

Less specific for soil fertility, but important as well:

  • The region should be able to protect its market, at least for a number of strategic commodities
  • The region should work on lowering, streamlining, and even abolishing tariffs between member states
  • The countries should work harder on tax collection.

Eric Smaling,
Wageningen Agricultural University

Samuel Gebreselassie
January 22, 2010 / Soil Fertility

Policy Framework for Increase and Effective Use of Fertilizer in Ethiopia: Evidence from Recent Experiences and Debating the Problems

1. Background The Ethiopian government has worked hard to reverse the country’s terrible history associated with a series of famines that ashamed of Ethiopians periodically since the 1970s.

Hunger, however, has once again re-visited Ethiopia this year, threatened the live of millions of Ethiopians and become the major news headline across the globe. Why Ethiopia unable to feed its population and thus continuing to depend on foreign donations of food to sustain millions of its citizens? Why a minor shocks as the 2008 failure of belg rain brought a significant impact on national food availability and hunger.

Despite some recent rapid growth of higher-value export crops such as coffee, livestock, and horticulture products, agricultural growth in Ethiopia remains unsatisfactory especially measured in terms of improving productivity in the cereal sector. The poor performance of the agricultural sector is unparalleled with its old history of institutionalized agricultural research and extension system in Africa. The formal beginnings of public agricultural research and extension in Ethiopia can be traced to the establishment of agricultural education establishments in the late 1940s and 1950s. The Institute of Agricultural Research (IAR) was established in 1966 with the formal mandate to formulate national agricultural research policy guidelines and undertake crops and livestock research. A major agricultural extension work began with the initiation of several package projects in the late 1960s and 1970s. It was thought that concentrating resources on the most promising regions would yield better results than spreading resources thinly over a larger area. The package consisted of mainly improved seeds, fertilizer and chemicals (Mulat, 1999). Since then, with the support of a variety of international institutions and donors a variety of agricultural development policies were experimented and several agricultural development programs and countless projects were implemented.

Most of recent agricultural development strategies and programs in Ethiopia are centred on fertilizer promotion, along with the provision of improved seeds, credit and farm management practices. Does these fertilizer-centred strategies worked? What is Ethiopia’s recent experience and challenges for increased and effective use of fertilizers? This paper will try to highlight some critical issues and debates the problems the country faced in its effort of enhancing the use of fertilizer in the smallholder sector.

2. Ethiopia’s recent experience with its fertilizer promotion strategy

Some 62 percent of the Ethiopian population is estimated to live in the moisture-reliant highlands . A core goal of the Ethiopian government agricultural strategy (ADLI) in recent years (since mid 1990s) was to raise cereal yields especially in moisture-reliant areas through a centralized and aggressive extension-based push focusing on technological packages that combined credit, fertilizers, improved seeds and better management practices. Following this strategy, fertilizer use has increased significantly (Byerlee et al, 2007).

Along with the new strategy, with support from the World Bank, the Ethiopian government formed a project to support for fertilizer market development in Ethiopia (Ethiopia National Fertilizer Project, ENFP) in 1992/93 with the aim of increasing agricultural production and productivity with an emphasis on fertilizer demand and supply, soil fertility management, and fertilizer policy reform. Since then, national fertilizer consumption increased almost three-times.

National fertilizer consumption at the beginning of the 1970s (when it was first introduced) and 1980s was about 950 and 43,200 tons, respectively (Tenkir et al, 2002). It increased to 250,000 tons (21 kg/ha) in 1995 and then to 323,000 tons (32 kg/ha) of product in 2004/05 . This growth of total fertilizer consumption was more rapid (i.e. it has been positive) than the average for Sub-Saharan Africa (SSA) over the same period, and the average use of fertilizer per hectare was almost double the average for Sub-Saharan Africa (Crawford, Jayne, and Kelly 2006, see Byerlee et al, 2007) . This rapid improvement is partly due to the decision of the Ethiopian government allowing farmers to buy fertilizer with 100 percent credit in 19995 (Alemenh, 2003).

Although the strong push for intensification has resulted in higher use of fertilizer, the figures for Ethiopia are still low when compared to those in other countries that have successfully intensified cereal production in the past, particularly in Asia. On average, fertilizer application rate was 110 and 101 Kilogram per hectare of arable and permanent cropland in South Asia in 1999 and 2002, respectively; and 251 kg/ha and 257 kg/ha in China and only 16 kg/ha and 14 kg/ha in Ethiopia during the same years (Byerlee et al, 2007).This leads to low level of land productivity. Despite the availability of proven technologies , a recent study reported that cereal yields in Ethiopia are less than a quarter of the yields achieved in Asia during the green revolution (MoFED and UNDP, 2007).

The state-led policy formulated to push seed-fertilizer technologies has helped to improve fertilizer use per hectare . Fertilizer consumption per hectare, albeit encouraging growth in recent years associated partly to the extremely low use in base year and partly to improved policy support, however, has increased only marginally and remains much below the level recommended by agricultural researchers or to the international standard especially to those Asian countries that have successfully experienced the green revolution.

Given the precarious food situation and acute land scarcity in the country, fertilizer, modern seed and improved water and farm management, are critically important for intensifying grain production and boosting food production in Ethiopia. Based on extensive data collected from millions of demonstrations carried out through PADETES (3.6 million in 1999 alone), Howard et al. (2003) indicated that the adoption of seed-fertilizer technologies could more than double cereal yields and would be profitable to farmers in moisture-reliant areas.

A study by Mulat et al (1997) also indicates that one ton of fertilizer can yield 3-7 tons of additional grain in high potential areas. In general, the role of fertilizer in improving the declining nutritional status and productivity of Ethiopia’s soil is widely recognized. Then what are the challenges to strengthen smallholder access to fertilizer in general and its wide, effective, profitable and sustainable use in particular. Why the massive, state-led policy and program formulated to boost the use of fertilizer (seed-fertilizer) has only brought a marginal improvement in its use (especially in terms of use per hectare of farm land) and unnoticed impact in terms of improving cereal productivity and food security.

A number of factors seem to account for the low level use of fertilizer, low technical efficiency in fertilizer use and poor performance of agricultural productivity in the face of significant efforts at intensification and use of modern inputs. A lot of studies (e.g. Byerlee et al, 2007, Habtemariam, 2004, Mulat, 1999) have identified a number of contributing factors. Below is a major points emerged from review of these studies.

2.1 Technical factors

One major factor appears to be low technical efficiency in the use of the principle modern input, fertilizer. A recent analysis indicated that farmers are only achieving on average 60 percent of their potential production, given current levels of input use (World Bank 2006a, see Byerlee et al, 2007). As a result, fertilizer use may be yielding negative returns to many farmers, thereby resulting in stagnation of further intensification and significant rates of dis-adoption. This may be associated to farmers’ suboptimal use of fertilizer and lack of complementary inputs. Farmers don’t often go along with the recommended practices (100 kg DAPS and 100 kg Urea for most crops except for teff and Urea which requires 50 kg of DAP and 200 kg of Urea) but follows practices they can afford (often half the recommended rate). As a highly specialized input, the efficient use of fertilizer generally requires complementary inputs (e.g. improved varieties), as well as higher levels of management. Farmers might not optimally mix the required ingredients.

As soil erosion and land degradation are major causes for low productivity and vulnerability of smallholders, chemical fertilizer should be augmented with soil conservation practices and use of organic fertilizers. This is especially important in view of increasing fertilizer price and need for foreign currency the country needs to import it (Ethiopia imports all of its fertilizer). It is widely recognized among experts and policy makers that the increasing application of fertilizer at the current price will not be affordable to many farmers and possibly the Government (Ethiopia struggles to get the foreign exchange required to import fertilizer), extension and research should accord a high priority to find an economically viable option that uses fertilizer in combination with other local available organic sources (Alemenh, 2003).

2.2 Policy related factors

Distortions in the land market, lack of effective policy on population and low level of non-farm employment

Sub-economic holdings operated by poverty-stricken farmers are not favorable for widespread dissemination of new agricultural technology. Apart from the population pressure, the land policy has significantly contributed to subeconomic holdings and tenure insecurity. The average farm size in Ethiopia has declined to just one ha due to the rapidly growing population. Over one-third (46%) of the rural holdings are less than 0.5 ha. Given the low level of productivity, nearly all produce is devoted to home consumption for households with smaller plots. There is little surplus for investment and for input purchase. Empirical studies have also shown that the probability of adopting fertilizer and improved seeds decreases with decline in farm size (Croppenstedt, et al., 1998; Mulat et al., 1998; Wolday, 1998, see Mulat, 1999).

Since the 1975 land reform which made all rural land public property, the possession of land plots has been conditional upon residence in the village. The transfer of land through long-term lease or sales as well as the possibility to use land as collateral that will help to generate money for investment on land has been forbidden. This coupled with lack of effective policy on population and low level of non-farm employment has overcrowded the rural sector. Increasing population in the rural areas was thus absorbed in agriculture through leveling down of holdings, rather than through alternative forms of employment.

Fertilizer trade – government policy, undeveloped market and lack of private sector participation

According Byerlee et al (2007), Ethiopian fertilizer market lacks the participation of the private sector especially in recent years. When fertilizer market was liberalized in early 1990s, the initial response of the private sector to market liberalization was rapid. By 1996, several private firms were importing fertilizer, and 67 private wholesalers and 2,300 retailers made up a significant share of the domestic market. However, since 1999 the private sector that had initially responded to the reforms has largely exited the fertilizer market. In the case of imports, the share of private firms operating in the market went from 33 percent in 1995 to zero in 1999.

The decline of the private sector in the retail market was more dramatic. While private sector retailers held a majority share of the market in the early 1990s, the public sector and cooperatives have become almost the sole distributors of fertilizer since early 2000. As of 2004, the public sector accounted for over 70 percent of distribution, with private dealers accounting for only 7 percent of sales nationwide (DSA, 2006, EEA/EEPRI 2006, see Byerlee et al, 2007). The public sector supply channels have also changed; whereas extension agents initially managed distribution, the responsibility was shifted to local input supply offices in more recent years.

Byerlee et al (2007) indicates that the current government policy is to target at least 80 percent of fertilizer sales through cooperatives, which are eventually intended to replace the public sector involvement in retail distribution of fertilizers. This process, as with the importation process, tends to favor those firms or organizations with access to capital markets and experience in navigating the regulatory and administrative systems at both the federal and regional levels.

Despite some positive effect of the public-cooperative monopoly in the fertilizer trade especially from short-term perspective; in sum, the current system in Ethiopia is inefficient and unsustainable in the long run, and that it severely hinders the development of sound input markets and financial institutions in rural areas. Byerlee et al (2007) assess the overall performance of the current system in terms of price competitiveness, services provided, and fiscal and other costs to the public sector.

Price competitiveness

At first glance, fertilizer prices in Ethiopia are competitive. The margin between domestic and international prices is higher in Ethiopia than in Asian and Latin American countries, but comparable to the margin in other African countries, including South Africa. A comparison of the price build-up of fertilizer from port to farm gate indicates that marketing margins in Ethiopia are somewhat lower than those in comparable African countries, and that costs may have decreased over time with improvements in transportation.

Another way to measure this is to compare prices in Ethiopia with prices in comparable countries that are deemed to have a relatively dynamic fertilizer industry. By this measure, prices in Ethiopia do not seem to be out of line, and are in fact often lower than those in Kenya, a country where fertilizer use by smallholders is growing rapidly (Ariga, Jayne, and Nyoro 2006, Heisey and Norton 2006, see Byerlee et al, 2007). In reality, however, these apparently low prices reflect the peculiarities of the Ethiopian fertilizer markets. For example, a part of the cost-build up in fertilizer delivery does not show up in retail prices because the bottom end of the supply chain is essentially subsidized, with extension agents and cooperatives assuming the retailing functions.

Despite sustainability and effectiveness of the public/cooperative dominance in fertilizer market, a reasonably high price associated to private sector might not hinder improved use of fertilizer. A review of the situation in Kenya where fertilizer use by smallholders growing much rapidly, for instance, reveals that a dynamic private sector can promote smallholder use of fertilizer even when prices are relatively high (Ariga, Jayne, and Nyoro 2006). Moreover, there are no solid evidence on the competitiveness of fertilizer price between the public and private sector in Ethiopia .

Quality and dependability of services

Fertilizer prices represent only one dimension of market performance. The ability to provide the right type of input of good quality to farmers in a timely manner is equally important. Based on a study by Byerlee et al, 2007, some problems that might affect the use of fertilizer or its profitability in Ethiopia are listed below.

  • Unlike neighboring countries, Ethiopia does not offer fertilizer in smaller packages or different formulations needed for non-cereal crops. The distribution system in Ethiopia is inflexible, providing only two types of fertilizer, both in 50 kg bags.
  • Moreover, numerous farmers in recent years (as many as half in some regions) have consistently reported late delivery of fertilizer. About 12 to 46 percent of farmers received fertilizer late, depending on the region. Many farmers also complained that bags were underweight, and 30 percent of farmers in two regions registered a negative response on quality.

    A study conducted in 2004 (Bonger et al, 2004) also reinforced these findings, reporting that half of farmers noted that the fertilizer arrived after planting, 32 percent reported underweight bags, 25 percent indicated poor quality, and almost 40 percent reported that their planting was delayed by fertilizer problems. Most recently, fertilizer quality problems had been reduced but delays in delivery were still common—25 percent or more of farmers complained of late delivery. Timely availability of fertilizer is critical in rainfed agriculture; fertilizer applied late causes it to be unprofitable, while delayed planting can incur even higher costs.

  • Beyond fiscal costs, there are also considerable but non-quantifiable implicit costs in the system, many of which are borne by the government through its input supply parastatal and administrative offices. These include the costs resulting from the “central planning” system of estimation of demand by extension agents at the local level and then aggregation at the national level as the basis for allocation import permits. This understandably results in substantial inefficiencies due to the lack of a market clearing mechanism. The indirect costs also include the storage costs and quality deterioration incurred because closing stocks have comprised 50 percent or more of total consumption in most years except in 2004 and 2005. Kenya, which has a fully private sector supply, has an inter-annual carryover average of less than 10 percent. Finally, the implicit costs include those resulting from damage done to extension-farmer relationships when and if extension agents participated to ensure fertilizer loan repayment.
  • Furthermore, fertilizer is tied to credit programs and fed by government targets for fertilizer consumption at the local, regional and national levels.
    • This may result in the promotion of fertilizer where it is not profitable, and could explain the negative returns to fertilizer noted above. It may also tend to create moral hazards among farmers with respect to careful use of credit, and may discourage the development of their skills in independent financial management.
    • In addition, input distribution tied to credit tends to limit the space available for the emergence of private sector retailers. Thus, those farmers with sufficient resources to purchase fertilizer for cash, often on more favorable terms than on credit, are unable to do so since there are very few private traders. This problem is compounded by the exit of private firms and the rise of party-affiliated companies and cooperatives—a situation that is widely perceived as reflecting the lack of a level playing field in the agricultural input sector.
    • Similarly, the guaranteed loan program with below-market interest rates creates an un-level playing field in the rural finance sector by undermining efforts to set up alternative institutions such as MFIs, branches of commercial banks, or independent financial cooperatives.
    • There are also high fiscal costs and fiscal risks associated with the guaranteed loan program. The write-off to loan guarantees amounted to Ethiopian birr (ETB) 84 million in 2001, but by 2005 liabilities had again accumulated to ETB 183 million (DSA 2006). Also in 2005, the Oromiya Region was obliged to pay out approximately ETB 84 million to the Commercial Bank of Ethiopia to honor its guarantees for the previous three-year time period. The guarantee thus becomes a subsidy that is not accounted for in government budgeting.

2.3 Institutional factors

The aforementioned problems that could hinder the extensive and efficient of fertilizer might be reflection of institutional weakness. Institutions working to improve the use and profitability of fertilizer use might face various problems like lack required financial and manpower resources. Weakness of these institutions in their internal administration and coordination among various institutions (extension, research and government) might also contribute. Following is a variety of problems related to institutional weaknesses that have hindered wide and more effective use of modern inputs in general and fertilizer in particular in the Ethiopian smallholder sector.

  • Adoption of conventional, top-down approach in agricultural extension that established a bureaucratic structure for the regular transmission of pre-determined technical messages from subject matter specialists to farmers. The hierarchical “culture” underlying the extension system does little to encourage and exploit the inherent resourcefulness of those who work closely with farmers and rural communities. Farming communities do not participate in extension planning, and the extension agents remain largely conveyors of technical messages, rather than active facilitators of community capacity building and providers of relevant information.
  • Low and unbalanced public investment between agricultural research and extension. Unlike many other developing countries, Ethiopia continues to invest heavily in its public sector-led agricultural extension system in order to implement the recent intensification program. But it drains resources that could be used else where more productively. Byerlee et al, 2007, for instance, reported that the public investment to the recent extension program, excluding the much larger expenditure on food security programs, amounted to over $50 million dollars annually or almost 2 percent of agricultural GDP in recent years. This was four to five times the investment in agricultural research.
  • Frequent restructuring of MoA – Since mid 1970s, MoA has undergone through at least ten major restructuring processes. It is worth mentioning here that evidences are difficult to find that would indicate that such restructuring measures were made based on commissioned studies evaluating previous organizational structures nor are there any measurable performance indicators suggested to monitor that the new structures would perform better. One could say that the organization of extension kept on changing because of leaders own intuitions, and not based on evaluation and assessment. This negatively affects continuity of programs and increases instability of staff which, in turn, affects the provision and sustainable use of modern inputs like fertilizer (Habtemariam, 2004).

In addition to institutional instability, weak financial and administrative capacity that lead to poor extension planning and monitoring system might have weaken the effectiveness of the extension system and indirectly, extensive, effective and sustainable use of fertilizer and other modern inputs among the small farmers (Habtemariam, 2004).


There is widely held view that poverty reduction in Ethiopia is impossible without significant growth in crop yields for major staples. Recent developments , however, depicts the enormous challenge the agricultural sector faced to satisfy national food requirement and help in reducing poverty. A recent study by Diao and Pratt (2007) shows that significant poverty reductions in Ethiopia could be achieved by prioritizing investment in improving cereals and other food staples productivity relative to both traditional and non-traditional export crops (see Byerlee et al, 2007).

The recent rapid growth of higher-value export crops especially cut flower (but to lesser degree other crops like coffee, livestock, and horticulture products) indicate the central role of government policy to improve agricultural production and productivity. Cheap and guaranteed access to farm land, financial resources and other incentives including duty free import of agricultural technologies and tax-holiday for investors help for rapid growth of the horticulture sector. To boost cereal production among other through extensive, effective and sustainable use of fertilizer, improved seeds and farm management practices, Ethiopian policy makers to reconsider their policy. The food sector needs a comparable but different kind of policy attention.

Any intervention to improve sustainable and effective use of fertilizer and other modern technologies should be holistic; systematic that could address a range factors discussed earlier. At the final analysis, productivity is a technical/technological problem but the intervention required to improve smallholders’ access to farm technologies and their efficient and sustainable use should not necessarily be implementing a technology-led extension program. If that is the case, Ethiopia’s over 4 decades experience should have made Ethiopian smallholders’ major users of modern farm technologies and alleviate the widespread structural food deficits and a chronic dependence on food aid.

Of course, technology required for enhancing productivity could be internationally available or generate domestically. Government policy and donors financial assistance to widely diffuse existing or new technologies (e.g. fertilizers and improved seeds) to areas with low productivity is only one aspect of the problem in a complex institutional, social and political environment. The exclusive concentration given to technology as a determinant of productivity in theory and the effectiveness of such a concentration in increasing productivity in practice in countries such as Ethiopia should be revisited. While technology is important, the whole social structure of the growth process needs to be considered to effect durable productivity enhancement and sustainable use of modern farm technologies like fertilizers and improved seeds.

It would be better, therefore, for Ethiopian policy makers and donors, to change their approach in dealing with the problem the country faced in promoting the use of fertilizer and its effective and sustainable use. Among others, they should refrain from making any specific recommendation (to improve farmers access to modern inputs such as fertilizer (e.g. subsidy)) before identifying and studying the whole gamut of factors that affect decisions by farmers, including the incentive structure, institutional configuration, governance and risk behaviour patterns.


Alemenh Dejene (2003). Integrated Natural Resources Management to Food Security. The Case for Community Based Approaches in Ethiopia. Environment and Natural Resources, Working Paper No. 16, FAO.

Byerlee, Derek; Spielman, David J; Dawit Alemu and Gauta Madhur (2007). Policies to Promote Cereal Intensification in Ethiopia: A Review of Evidence and Experience. IFPRI Discussion Paper 00707. June 2007.

Bonger, T., G. Ayele, and T. Kumsa. 2004. Agricultural extension, adoption and diffusion in Ethiopia. Research Report 1. Addis Ababa: Ethiopian Development Research Institute.

CSA (2007). Report on Area and Production of crops. Agricultural Sample Survey 2006/2007. Private Peasant holdings, Meher season. Volume I. Statistical Bulletin 388. Addis Abeba, Ethiopia.

EEA (2002). Second Annual Report on the Ethiopian Economy. Addis Abeba, Ethiopia.

UNOCHA (2002). Review and Consequences of Reduction in Agricultural Input Sales in 2002. A Situation Analysis, November 2002.

Jeanette Sutherland (2006). Fertilizer Toolkit: Ethiopia National Fertilizer Sector Project (1996 – 2002).

FAO/WFP (2008). Special Report: Crop and Food Security Assessment Mission to Ethiopia. (Phase One). January 2008).

Habtemariam Kassa (2004). Historical Developments and Current Challenges of Agricultural Extension with Particular Emphasis on Ethiopia. A Review Contributed to the EEA/EEPRI study on the Evaluation of PADETES.

Howard, J., E. Crawford, V. Kelly, M. Demeke, and J. J. Jeje. 2003. Promoting high-input maize technologies in Africa: The Sasakawa-Global 2000 experience in Ethiopia and Mozambique. Food Policy 28: 335–348.

MoFED and UNDP (2007). A Review of Ethiopia’s Economic Performance (1995 to 2005) and the Human Development Outcomes and Issues. Paper Presented at Consensus Building Workshop for National Human Development Report (NHDR), Ethiopia. Addis Abeba, Ethiopia.

Mulat Demeke (1999). Agricultural Technology, Economic Viability And Poverty Alleviation In Ethiopia. Paper Presented to the Agricultural Transformation Policy Workshop Nairobi, Kenya 27-30 June 1999

Tenkir Bonger, Eleni Gabre-Madhin and Suresh Babu (2002). Agricultural Technology Diffusion and Price Policy. Proceedings of a Policy Forum in Addis Abeba, March 25, 2002. Ethiopian Development Research Institute and International Food Policy Research Institute. 2020 Vision Network for East Africa, Report 1, June 2002.

Samuel Gebreselassie, Researcher
Ethiopian Economic Policy Research Institute (EEPRI)

Rob Tripp
January 22, 2010 / Soil Fertility

First, the authors of the document should be congratulated for providing such a thoughtful and comprehensive summary of the issues.

The document describes a number of “models”, many of which have made some contribution, and it correctly points out that virtually all are being promoted to some extent at the present time.

In the face of limited success from past efforts we are asked, “Are things different now?” The document answers in the affirmative, but this can be debated. One thing that hasn’t changed is that a number of well-meaning development agencies, institutes, researchers, etc are still hoping to see a comprehensive plan fashioned from disparate interests and initiatives. Although some of the vocabulary inevitably changes, we are still lining up to march behind our chosen banner, be it “integrated soil fertility”, “innovation systems”, “smart subsidies” ,or whatever. And the fact that donors have large amounts of money they want (or in some cases are obliged) to spend may be a mixed blessing.

Surely part of the explanation for only modest success in the past is precisely that these have largely been special initiatives, introduced from outside. They usually pay little attention to the long-term capacities of the people meant to manage them or to the abilities of farming populations to have any influence over what their governments (or external agencies) provide. In addition, they usually bypass any examination of exactly what proportion of the African rural population has enough interest in, or income from, farming to elicit realistic commitment. Thus it might be argued that the specifics of a soil fertility plan should be postponed until there are coherent investments in developing more general policy capacity, political responsiveness, and rural organization. But donors are generally not set up to address these more basic issues, and the development industry has difficulty reaping rewards from long-term capacity building.

It is difficult to see how effective soil fertility policies will arise in the midst of more general inefficiencies in African agricultural economies. This is not meant to dismiss the questions asked at the end of the document about specific design principles related to soil fertility management. They are certainly relevant, but it is a challenge to see how they can be debated in the abstract. If we wish to avoid the disappointments of other failed programs and plans addressing African soil fertility management, it may be best for us to turn our attention inward, and to ask if our own development profession (as currently structured) can offer solutions, or is part of the problem. An integrated approach to soil fertility certainly makes sense, but is unlikely to be achieved as long as donors are not capable of an integrated approach to the development of basic national capacities. Without this, we may simply be entering another round of competition to collect rents from pilot projects and fruitless discussions about scaling up.

Rob Tripp, Research Associate
Overseas Development Institute

Willem A. Stoop
January 22, 2010 / Soil Fertility

Major recent studies about the problems of African soils and consequently the low agricultural production have all recognised two generalised, yet paramount, problems:

  • Low to very low soil fertility levels as compared with the other major agricultural production areas in the world, caused by low active-clay and soil organic matter contents, resulting into low nutrient retention / buffering capacities, often in combination with multiple nutrient deficiencies and nutrient imbalances that are readily induced  and aggravated by prolonged use of mineral fertilizers of standardised nutrient compositions.
  • A large variability / diversity in soils over short distances (i.e. within farms and individual fields).

These two major problems cannot possibly be handled through standardised type technological solutions like seeds of so called improved varieties, agricultural chemicals (mineral fertilizers in particular) and increased availability of water. And yet these are the major aspects, that have been highlighted albeit unsuccessfully in the past through ambitious projects like T&V, SG 2000 and currently again through the “Millennium Villages Project” and “Alliance for a Green Revolution in Africa”.

Currently the issue of soil health is being emphasized increasingly as a component of technological approaches like “conservation agriculture / no-till systems”, “integrated soil fertility management”, “the system of rice intensification (SRI)” among others. These are laudable developments, that contribute to viewing soils as dynamic and living systems in which the combination of organic matter and soil (micro)biology are crucial (at a par with the conventional physical and chemical soils’ parameters) in ensuring the long term sustainability of soil productivity and of agricultural production processes that rely upon it.

However, in spite of  the scientific rational / logic of the various integrated approaches, these remain surrounded by combinations of (scientific) controversies, originating from differing ideas about what types of paradigms to promote, unresolved research questions, including effectiveness and efficiency issues, as well as by practical constraints associated with field implementation of such approaches under diverse farming conditions. Therefore long term support for research (national and international), conducted by well-trained, and adequate numbers of scientists pursuing the soil fertility issues holistically instead of through short term silver bullet type responses, still remains a basic requirement for achieving progress.

Within the context of the major development campaigns / projects referred to above, also the introduction of integrated approaches as blueprints, are bound to encounter a mixed response from farmers, simply because the practical implications of points 1 and 2 above have not been thought through adequately. Obviously, any farmer and professional field agronomist / extension agent will be aware of these two problems and consequently of the limitations of the large scale approaches / technologies proposed by academics, (international) development experts and policymakers who are not exposed regularly to the practical field realities of farming. In short the ever increasing gap between “theory” and “reality”, and the corresponding “intertwining of scientific, commercial and political interests”, is likely to remain a serious stumbling block for improving African soils and their agricultural productivity.

Where do the preceding observations lead us in terms of policy frameworks in support of agricultural production by African nations? Firstly one has to face the fact that nearly all African governments have seriously neglected their respective agricultural sectors up to the point that it is unattractive for the average farmer to make any investment in his/her farm beyond what is required for the immediate survival of his/her family. Consequently there are no or highly inadequate emergency food buffers build up at national level to counter natural and other calamities. Secondly this situation is compounded by unfavourable international trade conditions (e.g. heavily subsidized production and dumping of excess production from the North; until recently, cheap rice imports from Asia and; etc.) which in the absence of adequate government trade / economic policies have undermined the domestic production capacity in most African countries.

Rectifying the situation will depend first and foremost on national governments getting their policies “right” in support for their respective agricultural sectors with regard to trade, infrastructural investments and adequate support for building and maintaining a stable agricultural technology R&D capacity based on a socially appropriate vision for rural development and agricultural production. In the absence of such national vision and policies, it is unlikely that external assistance programs and short term ad-hoc projects can contribute to sustainable improvements in soil systems and agriculture productivity, apart from providing poor “emergency aid”.

For national and international agricultural development interventions to be effective (i.e. to deal with the introductory points 1 and 2) they should be soundly and solidly anchored at local levels, in other words “bottom-up” and “participatory” approaches are a pre-condition. In addition, the implementing parties (i.e. farmers, research and development personnel) should be provided with considerable flexibility to test, adjust and adapt various practices and innovations to local conditions and needs, instead of being supervised strictly for achieving predetermined implementation targets for a standard recipe, and for writing meaningless journal articles. These conditions are, however, not self-evident since the average scientist and politician (irrespective of nationality) tends to operate in top-down, authoritarian fashions, often having been trained academically to believe that they know what is best.

In conclusion the points made by Prof. William Easterly1. become highly relevant in this debate, in particular that external (technical and financial) support to African countries should be piece-meal and should be built on / reinforce national capacities and initiatives that meet the dual requirements of being anchored at local levels, while being enhanced (rather than blocked) by national government policies.

1. Easterly, W., 2006. The White Men’s Burden. Penguin Publications, London.

Willem A. Stoop
Centre for Information on Low External Input and Sustainable Agriculture (ILEIA)

Dr. Keith D Shepherd
January 22, 2010 / Soil Fertility

In my view, any policy for improved soil fertility management must have the below ingredients to ensure efficiency and reliable learning.

  1. A systematic programme to properly diagnose soil fertility constraints and their associated risk factors spatially at different scales, using statistically valid sampling schemes. We have the technology to do this cost-effectively now. Participatory diagnosis by land users/communities is important but not a substitute for scientifically sound objective assessments. There is need for interaction among both types of systems.
  2. A systematic programme for testing soil fertility management options using standardized protocols and linked to the baseline above (no. 1) to provide evidence-based recommendations. Again this is required to complement and inform farmers testing strategies.
  3. Baselines and monitoring of soil fertility in soil management/development projects so impacts of interventions can be reliably assessed. Again no.1 above provides a method for doing this.

This evidence base is needed to inform decision making at all levels: individual farmers, communities, stockists, fertilizer/seed companies, land resource managers, national research and extension, government planning and finance ministries, donors, development agencies, etc. We have the technology to do this – we just need good design and systematic application. The types of systems I am describing are surveillance systems similar to those used in the public health sector – which indeed primarily guide public policy and practice.

Dr. Keith D Shepherd, Principal Soil Scientist
World Agroforestry Centre (ICRAF)

Wyn Richards
January 22, 2010 / Soil Fertility

My few comments are based largely on my observation of agricultural practice in the developing world over the past 39 years , not on any great expertise in soil fertility. I refer particularly to the viable farming practices of NR dependent subsistence and subsistence-plus farmers as well as those who are more market oriented. I will not deal with land tenure issues although these certainly need to be addressed by policy makers as there is clearly a major influence on soil fertility emanating from the consequences of unfair land access; nor will I emphasise on the need for policy makers to address tree felling/forest clearing and its influence on soil degradation.  Rather I wish to deal with the lot of the literally hundreds of millions of farmers with access to 0.1 – 2 acres of land  – those who still practice slash and burn shifting cultivation to the more fortunate ones who own land that is ‘farmed’.

The first point I wish to emphasise is the need  for policy makers to be reminded that the most effective and resilient use of small parcels of land (and soil) is achieved through MIXED farming practices. Unfortunately, policy makers in the developing world have been over-influenced by land-use policies of large scale agriculture in the North/West where the whole marketing , economic and social structures are totally different to those in the South.

Unfortunately, there are a myriad examples where well-meaning but badly conceived approaches to land use in the South have created havoc among rural poor communities. For instance, in the 1970s, enticed by the lure of financial gain, the Kenya Govt convinced mixed (crop/livestock) farmers in the Machakos region to transform their small plots into maize-only  farms  in an attempt to create a maize bank for the country. Initially the ‘project’ was deemed to be successful judging by financial rewards for the farmers –  but ultimately the repeated mono-culture approach denuded the soil of tilth and fertility and the productivity declined precipitously . Furthermore, the incidence of kwashiorkor increased significantly during this time as the extra cash earned did not go to purchase the balanced diet required ( milk/meat, cabbage, beans etc) by growing children and which the mixed farm structure would have originally provided. There are many Machakos-like experiments  around the world; one only has to visit India to see the vast amount of land denuded by the mono-culture approach promoted by the Indian Govt of the past. The Green Revolution approach too has had its impact on soil fertility  as it has made too many demands of friable land.

My second point is related to the first –  but is regularly ignored. Successful small-scale farming is as much about social engagement with the community as it is  a means of sustenance and cash rewards. These social networks provide security, confidence to take risk and other forms of social capital that are often the drivers in poor societies. The terms efficiency and financial returns so appreciated in the North do not resonate so loudly in the small-farmer community. And, getting to the point, tradition and culture in the rural community has always been based on a mixed farming approach – the consequences of which has maintained and enriched soils for eons.

Wyn Richards
Natural Resources International Limited

Frank M. Place
January 22, 2010 / Soil Fertility

1.  The Soil Fertility Initiative.  I think it failed for several reasons.  First, it was top down led largely from the World Bank.  2.  It was even marginalized within the bank with really only one champion trying to move it forward, 3.  As far as I know there was never any new money for this – it became an approved use of World Bank country funds, but countries would have had to cut other programs, which as we know, is difficult to do in any country.  The new momentum is much broader based (institutionally) and has new money.

2.  Promoting wider adoption of soil fertility management practices.  What is written on the variability of soil constraints, even at micro scales, is very true.  It is further true that the uptake of any individual option or practice is very low with two possible exceptions:  (1) in some countries and for some higher value crops (mainly export crops) there has been high use of inputs including soil fertility management and (2) incorporation of animal manure or crop residues which are locally available by-products from other enterprises.

The overall lack of investment results from a combination of lack of incentives to invest in agriculture as a whole, lack of payoffs to the particular soil practices, or failing that, lack of credit or other resources to implement the practices.  All soil fertility management practices face some constraint in their implementation, be it cash/capital, labor, land area, irrigation/water, equipment, or other.  Because of that, their suitability to certain community and household conditions varies across the landscape, as do the soil constraints.  There is certainly no uniform technical solution, the there may be some consistent principles and approaches to follow.

So what to do?

1.  We do need better diagnoses of soil constraints because farmers truly can’t afford to be wrong about how to address their soils. They face high risks even when they are right.  Africa can’t afford too much sophistication in this, but it needs to advance from the current state of knowledge.

2.  Because of the general lack of profitability of smallholder agriculture, I just can’t see wide adoption of soil fertility practices unless there is significant public investment in the sector.  This needs to be in some of the areas mentioned – to help improve input markets, and to improve credit access by smallholder farmers.  The private sector cannot do these in Africa.  A real question is whether this is enough.  Well, it isn’t in the short run, for sure.  So I believe that smart subsidies are needed, not only for fertilizer, but to encourage the use of complementary soil fertility practices (e.g. to help support information dissemination or leguminous seed multiplication).  It seems clear from the examples we have had in recent years, that these types of investments can be very beneficial.  If they are not implemented, and agriculture production remains poor, many other costs emerge that do not enter into analysts’ equations (rising health needs, food aid, transactions costs associated with dual residence families, etc….).

3.  How to do that, what frameworks, investment strategies, partnerships, policies, institutions, etc, are needed?  Well that is not simple for sure and we do need some good ideas on that.  I am familiar with CAADP, TerrAfrica, AGRA, but haven’t really given thought to the bigger picture. Thus, I will hold off on commenting for now.

Frank M. Place, Economist
World Agroforestry Centre

Pedro Sanchez
January 22, 2010 / Soil Fertility

Increasing agricultural productivity and achieving caloric food security is a first-year goal in most of the Millennium Villages (MV) sites. Soon after the first harvest, communities in MVP areas should diversify crops both for nutritional diversity, with vegetables, fruits and livestock, and for income generation, with high-value products.

In the short term, a package of technologies, including superior germplasm, agronomic practices, and postharvest handling, must be determined in consultation with the communities and agricultural expertise in each site. In the medium and longer term, a package of services is crucial to the economic viability of agriculture. These services include: timely supply to improved seeds of staple and cash crops as well as improved livestock and vegetables; fertilizers, water, and credit; training; and the establishment and strengthening of village farmer organizations. Initially some of these services must be provided through the project, but a transition to private sector agricultural input dealers and public sector extension agents is essential. This vision will also require putting into place a package of public policies, which include input and output markets, building up grain reserves, and strengthening rural infrastructure.

Broadly, agriculture interventions aim at more robust and diversified agriculture, including nitrogen-fixing trees and cover crops, organic manures, crop rotations, soil conservation practices, livestock, aquaculture, small-scale water management, improved crop storage, and crop insurance. More specifically, soil rehabilitation techniques, which comprise a significant aspect of agriculture interventions, include:

  • Fertilizers and hybrid maize subsidies by the government
  • Joint use of mineral and organic fertilizers, the latter of which include green manures and leguminous tree fallows
  • Financial incentives for N-fixing legumes

The MVP has already seen successes with these interventions, specifically in Mwandama, Malawi, which is in the southern region of Malawi’s Zomba district. Nearly 90% of people in the Mwandama Millennium Village cluster live in extreme poverty, a much higher proportion than the 65% national level. Prior to the MVP interventions, the average maize yield without fertilizer was 0.5 tons per hectare. Most households produced enough food to last through August, meaning that families experience a six-month period of food shortage.

Mwandama suffered a drought in the year preceding the start of MVP operations. But even in good rainy seasons, the shortage of nitrogen in the soil resulted in low maize yields. After MVP initiated agriculture interventions, including those described above, maize yields increased from .8 to 6.5 t-ha-1 in 2005/06. In addition, the area planted almost doubled, and the total maize production increased nearly 15-fold. Maize yields  from farms not using improved seeds and fertilizers averaged 2.2 t-ha-1, illustrating that improved rains were only responsible for half of the yield increases.

Malawi is also seeing improvements in agricultural productivity on a national scale. Decades of intensive cultivation in the absence of significant fertilizer use has resulted in a depletion of nutrients, particularly nitrogen, from smallholder fields. National yields of smallholder maize have averaged 1.2 MT/ ha during the last 20 years, and more than half of the farming households operate below subsistence. A dry spell in 2004 had devastating impacts on maize yields. Total maize production in 2004/5 declined nearly a quarter from the previous year, providing just 57% of the national maize requirement. In response, in June 2005, the Government of Malawi began to import fertilizer and procure improved maize seed for distribution to farmers through a national subsidy scheme.

For the 2005/6 season, the Government allocated 2 million coupons sufficient fertilizer to grow maize in 1 acre (0.4 ha), at the recommended rates (86 kg N ha-1 and 11.5 kg P ha-1). An additional 740,000 coupons were allocated for growing tobacco. For maize, the recommended nutrients were provided by one 50-kg bag of 23-21-0 fertilizer and one 50-kg bag of urea. Coupons enabled farmers to purchase fertilizer at MK 950 per bag ($7.60) compared to the market prices ranging from MK 2,500 ($20) – MK 3,500 ($28).

The 2005/6 season was characterized by good rains. The total maize production more than doubled from the previous year, producing a surplus of 510,000 MT above the national maize requirement. Maize yields averaged 1.59 MT/ha, almost doubling the 0.81 MT/ha of the drought-affected 2004/5 season.  Estimates for the 2006/7 harvest illustrate a 32% increase over the 2005/6, an all-time national record for Malawi, generating a surplus of about 1.34 million MT of maize grain above national requirements.

Pedro Sanchez,
Director, Tropical Agriculture and Rural Environment
Director, Millennium Villages Project
The Earth Institute at Columbia University